IPv6 Essentials

IPv6 Essentials

Language: English

Pages: 414

ISBN: 1449319211

Format: PDF / Kindle (mobi) / ePub

If your organization is gearing up for IPv6, this in-depth book provides the practical information and guidance you need to plan for, design, and implement this vastly improved protocol. Author Silvia Hagen takes system and network administrators, engineers, and network designers through the technical details of IPv6 features and functions, and provides options for those who need to integrate IPv6 with their current IPv4 infrastructure.

The flood of Internet-enabled devices has made migrating to IPv6 a paramount concern worldwide. In this updated edition, Hagen distills more than ten years of studying, working with, and consulting with enterprises on IPv6. It’s the only book of its kind.

IPv6 Essentials covers:

  • Address architecture, header structure, and the ICMPv6 message format
  • IPv6 mechanisms such as Neighbor Discovery, Stateless Address autoconfiguration, and Duplicate Address detection
  • Network-related aspects and services: Layer 2 support, Upper Layer Protocols, and Checksums
  • IPv6 security: general practices, IPSec basics, IPv6 security elements, and enterprise security models
  • Transitioning to IPv6: dual-stack operation, tunneling, and translation techniques
  • Mobile IPv6: technology for a new generation of mobile services
  • Planning options, integration scenarios, address plan, best practices, and dos and don’ts



















assigned to an interface. The next three sections describe three different types of addresses that have been specified to be used with different transition mechanisms. These virtual interfaces are called pseudo-interfaces. IPv6 addresses with embedded IPv4 addresses Because the transition to IPv6 will be gradual, two special types of addresses have been defined for backward compatibility with IPv4. Both are described in RFC 2373: IPv4-compatible IPv6 address This type of address is used

distribution, and management system. Since a worldwide repository for public keys or digital certificates does not yet exist, PGP—in contrast to PEM—relies on a "web of trust" scheme, which requires each individual PGP user to cross-certify (i.e., digitally sign) public keys received from other PGP users. In such a scheme, if user A trusts user B and user B trusts user C, then user A may also place sufficient trust in user C (the common credential being user B) and accept user C's public key into

address. Chapter 3 explains how this process works. If the destination address is a multicast address, the first two bytes of the MAC address are set to 3333 and the last four bytes are the last four bytes of the IPv6 destination multicast address. If the destination address is the solicited-node multicast address (described in Chapter 3), the first two bytes in the MAC header contain the multicast prefix 3333, the third byte contains the value FF, and the last three bytes contain the last three

binding of a mobile node's home address with its care-of address. The mobile node attached to a foreign network now uses its care-of address as a source address when sending packets. The mobile node's home address is carried in a Destination Options header, which means the session control information is piggybacked onto the same packet. In Mobile IPv4, those control messages had to be sent in separate UDP packets. The use of the care-of address as the source address also simplifies multicast

packets exchanged directly once the binding update has happened can be sent using a Routing header, which is more efficient and creates less overhead. With Mobile IPv4, a mobile node detects a Home Agent by sending out a broadcast request and therefore receives separate answers from all Home Agents on its segment. With IPv6, the request is sent using an anycast address, which results in one reply only. Great reference sites about Mobile IP on http://computer.org/internet/v2n1/perkins.htm

Download sample